
Элементы IVA-группы.

	CITIDI TVA IP				
С	неметаллы	ёт 	эсть	тва	Электронное строение внешнего уровня:
Si		растё	ельно гся	свойства гся	ns²np² Степени окисления:
Ge	металлы	атома	оицатель ьшается	лические усиливают	+ 4, +2, - 4(для неметаллов)
Sn		Радиус а	умен	Металлические усиливаю ←	
Pb		Pa <u>/</u>	Элект	Мета.	

Углерод С

Имеет несколько аллотропных модификаций: алмаз, графит, карбин, фуллерен.

Алмаз — кристаллическое вещество, прозрачное, сильно преломляет лучи света, очень твёрдое, не проводит электрический ток, плохо проводит тепло. Каждый атом углерода находится в состоянии ${\rm sp}^3$ -гибридизации.

Графит — мягкое вещество серого цвета со слабым металлическим блеском, жирное на ощупь, проводит электрический ток. Атомы углерода находятся в состоянии sp2-гибридизации и связаны в плоские слои, состоящие из соединенных ребрами шестиугольников, наподобие пчелиных сот.

<u>Графит – наиболее устойчивая при комнатной температуре аллотропная модификация углерода.</u>

Карбин — мелкокристаллический порошок серого цвета, полупроводник. Его кристаллы состоят из линейных цепочек углеродных атомов, соединенных чередующимися тройными и одинарными связями, или двойными связями, углерод находится в состоянии sp-гибридизации: -C = C - C = C - C = C

По твердости карбин превосходит графит, но значительно уступает алмазу.

Фуллерен - искусственно полученная модификация углерода, состоящая из молекул C_{60} , C_{70} , C_{1020} . Эти молекулы составлены из атомов углерода, объединенных в пяти и шести угольники с общими ребрами.

Это черные вещества с металлическим блеском, обладающие свойствами полупроводников. При давлении порядка $2\cdot 10^5$ атм и комнатной температуре фуллерен превращается в алмаз.

Свойства простого вещества углерода:

1. Взаимодействие с фтором: углерод обладает низкой реакционной способностью, из галогенов непосредственно реагирует только с	$C + 2F_2 = CF_4.$
фтором.	
2. Взаимодействие с кислородом:	$2C + O_2$ (недост) = $2CO$ (угарный газ), $C + O_2$ (изб) = CO_2 (углекислый газ).
3. Взаимодействие с другими неметалла-	C + Si - t→ SiC
ми: не взаимодействует с фосфором.	C + N_2 –(эл. разряд) → C_2N_2
	$C + 2S = CS_2$
	$C + 2H_2 -t$, $Ni \rightarrow CH_4$
	$Ca + 2C -t \rightarrow CaC_2$
	$3C + 4AI -t \rightarrow AI_4C_3$
4. Взаимодействие с водой: при пропуска-	$C + H_2O -t \rightarrow CO + H_2$.
нии водяных паров через раскаленный уголь	
образуется оксид углерода (II) и водород:	
5. Восстановительные свойства: углерод	2ZnO + C - t→ 2Zn + CO
способен восстанавливать многие металлы из	$4C + Fe_3O_4 - t \rightarrow 3Fe + 4CO$
их оксидов:	
6.Концентрированные серная и азотная	$C + 2H_2SO_4(конц) = CO_2 + 2SO_2 + 2H_2O;$
кислоты при нагревании окисляют углерод до оксида углерода (IV):	$C+4HNO_3$ (конц) = $CO_2 + 4NO_2 + 2H_2O$.

Классификация карбидов

Карбиды- это соединения углерода с металлами.

Ковалентные	Ионные, или солеобразные		
SiC, B ₄ C.	Карбиды, при гидролизе	Карбиды, при гидролизе ко-	
Имеют прочные кова-	которых образуется ме-	торых получается ацети-	
лентные связи <u>в атом-</u>	тан – «метаниды»:	лен – «ацетилениды»:	
<u>ной решетке,</u> поэтому	Al ₄ C ₃ , Be ₂ C	Na ₂ C ₂ , Ag ₂ C ₂ , CaC ₂	
очень стабильны и хи-		$CaC_2+2H_2O=Ca(OH)_2+C_2H_2$	
мически инертны.	$Al_4C_3 + 12HCl = 4AlCl_3 + 3CH_4$	$Ag_2C_2 + 2HCI = 2AgCI + C_2H_2$	

Оксиды углерода.

околды у	co	CO ₂
Характери-	угарный газ – б\ц, б\з, ядовит	углекислый газ – б/ц, б/з
стика		
	Молекула оксида углерода (II) имеет	Молекула CO₂ линейная, тип гибриди-
	линейное строение. Между атомами	зации углерода – sp
	углерода и кислорода образуется	
	тройная связь, засчёт дополни-	
	тельной донорно-акцепторной связи.	0=C=0
	донорно-акцепторная связь	
Тип оксида	<mark>несолеобразующий</mark>	<mark>кислотный</mark>
	1) можно окислить кислородом:	1)Типичный кислотный оксид.
	$2CO + O_2 = 2CO_2$	Реагирует с основными оксидами, ос-
	2) реагирует с хлором, образуя	нованиями, образуя карбонаты и
	фосген: $CO + Cl_2 = COCl_2$	гидрокарбонаты.

	T	
	3) реагирует с водородом, в зави-	$Na_2O + CO_2 = Na_2CO_3$,
	симости от условий образуются раз-	2NaOH(изб) + CO2 = Na2CO3 + H2O,
	ные продукты: $CO + H_2 = CH_4 + H_2O$	$NaOH + CO_2$ (изб)= $NaHCO_3$.
	$CO + H_2 -t,p,kat \rightarrow CH_3OH$	3) В водном растворе реагирует с
	4) под давлением реагирует со	карбонатами активных металлов, об-
	щелочью , образуя формиат – соль	разуя кислые соли:
	муравьиной кислоты:	$Na_2CO_3 + CO_2 + H_2O = 2NaHCO_3$.
	CO + NaOH −t,p→ HCOONa	Качественной реакцией для обнару-
	(формиат натрия)	жения углекислого газа является по-
	5) Может восстанавливать ме-	мутнение известковой воды:
	таллы из оксидов.	$Ca(OH)_2 + CO_2 = CaCO_3 \downarrow + H_2O.$
	$CO + CuO -t \rightarrow Cu + CO_2$	2)Проявляет свойства слабого окис-
		лителя: C + CO ₂ −t,p \rightarrow 2CO.
		$2Mg + CO_2 -t,p \rightarrow 2MgO + C$
		(магний горит в углекислом газе)
Получение	1)Образуется в газогенераторах при	Получают углекислый газ обжигом
	пропускании воздуха через раска-	известняка:
	ленный уголь:	$CaCO_3 = CaO + CO_2$
	$C + O_2 = CO_2$, $CO_2 + C = 2CO$.	или действием сильных кислот на
	2)Получается при термическом раз-	карбонаты и гидрокарбонаты:
	ложении муравьиной или щавелевой	$CaCO_3 + 2HCI = CaCl_2 + H_2O + CO_2$
	кислоты в присутствии концентриро-	$NaHCO_3 + HCl = NaCl + H_2O + CO_2$.
	ванной серной кислоты:	
	$HCOOH = H_2O + CO,$	
	$H_2C_2O_4 = CO + CO_2 + H_2O$	

При растворении углекислого газа в воде образуется очень слабая **угольная кислота H_2CO_{3.}** Углекислый газ в воде находится преимущественно в виде **гидратированных молекул СО**₂ и лишь в незначительной степени в форме угольной кислоты. При этом в растворе устанавливается равновесие:

$$CO_{2(r)} + H_2O \rightleftarrows CO_2 \cdot H_2O_{(pactBop)} \rightleftarrows H_2CO_3 \rightleftarrows H^+ + HCO_3^-$$

Угольная кислота – слабая неустойчивая кислота, которую в свободном состоянии из водных растворов выделить нельзя.

<u>Карбонаты.</u>

- 1) Карбонаты металлов (<u>кроме карбонатов натрия, калия, рубидия и цезия</u>) при **нагревании** разлагаются: CuCO₃ −t→ CuO + CO₂
- 2) При пропускании углекислого газа из карбонатов образуются гидрокарбонаты: $CaCO_3 + CO_2 + H_2O = Ca(HCO_3)_2$.
- 3) Гидрокарбонаты разлагаются до карбонатов: $2NaHCO_3 t \rightarrow Na_2CO_3 + H_2O + CO_2$.
- 4) Карбонаты и гидрокарбонаты вступают в обменные реакции:
- а) с сильными кислотами (качественная реакция на карбонаты): $Na_2CO_3 + 2HCI = 2NaCI + H_2O + CO_2\uparrow;$
- б) с растворимыми солями и основаниями, если образуется осадок: $Na_2CO_3 + Ba(OH)_2 = BaCO_3 \downarrow + 2NaOH$ $Na_2CO_3 + CaCl_2 = CaCO_3 \downarrow + 2NaCl$
- 5) Гидрокарбонаты реагируют со щелочами, образуя средние соли: $KHCO_3 + KOH = K_2CO_3 + H_2O$

Кремний.

Расположен в IV группе Периодической системы, главной подгруппе.

Электронное строение внешнего уровня: 3s²3p²

Проявляет степени окисления: -4, +2, +4.

Второй по распространенности элемент на Земле после кислорода.

Встречается только в виде соединений. Оксид кремния SiO_2 образует большое количество природных веществ — горный хрусталь, кварц, кремнезем.

Физические свойства.

Вещество темно-серого цвета с металлическим блеском, довольно хрупок. Температура плавления 1415 °C, плотность 2,33 г/см³. Полупроводник.

Химические свойства:

Кремний – типичный неметалл, может быть окислителем и восстановителем.

премнии – типичный неметалл, может овть окис	INTERIOR IN DOCCTORIODITERICITI
1)Взаимодействие с галогенами: непосредствен-	$Si + 2F_2 = SiF_4$
но взаимодействует только с фтором. С хлором	$Si + 2Cl_2 -t \rightarrow SiCl_4$
реагирует при нагревании.	
2) Взаимодействие с кислородом	$Si + O_2 -t \rightarrow SiO_2$
3) Взаимодействие с другими неметаллами:	Si + C -t→SiC
С водородом не взаимодействует.	$3Si + 2N_2 = Si_3N_4$
4) Взаимодействие с галогеноводородами. С	$Si + 4HF = SiF_4 + 2H_2$
фтороводородом реагирует при обычных усло-	
виях, с хлороводородом – при 300 °C, с бромо-	
водородом – при 500 °C.	
5) Взаимодействие с активными металлами: об-	2Ca + Si = Ca2Si
разует силициды.	силицид кальция
6) Взаимодействие с кислотами. Устойчив к дей-	$3Si + 4HNO_3 + 18HF = 3H_2[SiF_6]$
ствию кислот, взаимодействует только со смесью	+ 4NO + 8H ₂ O
плавиковой и азотной кислот, образуя тетраф-	
торокремниевую кислоту.	
7) Растворяется в щелочах, образуя силикат и	$Si +2NaOH +H_2O = Na_2SiO_3 + 2H_2$
водород:	

Получение кремния.

В лаборатории:

Восстановлением из оксида магнием или алюминием:

$$SiO_2 + 2Mg = Si + 2MgO;$$

 $3SiO_2 + 4Al = 3Si + 2Al_2O_3.$

В промышленности:

- 1)Восстановлением из оксида коксом в электрических печах: $SiO_2 + 2C t$ > Si + 2CO.
- При таком процессе Si загрязнен карбидами кремния.
- 2) Наиболее чистый кремний получают восстановлением тетрахлорида кремния водородом при 1200 °C: SiCl₄ +2H₂-t→Si + 4HCl,
- или цинком: SiCl₄ + 2Zn -t \rightarrow Si + 2ZnCl₂.
- 3)Также чистый кремний получается при разложении силана: SiH_4 -t \rightarrow Si + $2H_2$

Силициды -соединения кремния с металлами, в которых кремний имеет степень окисления -4. Силициды щелочных и щелочно-земельных металлов характеризуются **ионным типом** связи, они химически активны. Они легко разлагаются водой или разбавленными кислотами с выделением силана: $Ca_2Si + 2H_2SO_4 = 2CaSO_4 + SiH_4$.

Получают силициды сплавлением простых веществ или восстановлением смеси оксидов коксом в электропечах: $2Mg + Si = Mg_2Si$,

 $2MgO + SiO_2 + 4C = Mg_2Si + 4CO$.

Силан SiH₄. (моносилан).

Получение: Образуется при действии на силицид магния соляной кислотой: $SiH_4 + 2O_2 = SiO_2 + 2H_2O$ (самовоспламенение на воздухе) Активно взаимодействует со щелочами: $SiH_4 + 2NaOH + H_2O = Na_2SiO_3 + 4H_2$. При нагревании разлагается: $SiH_4 = Si + 2H_2$.

В соединениях кремния с неметаллами - ковалентная связь. Наибольшее значение имеет **карбид кремния** — **карборунд Si⁺⁴C⁻⁴**. Он имеет атомную кристаллическую решетку. Он имеет структуру, подобную структуре алмаза и характеризуется высокой твердостью и температурой плавления, а также высокой химической устойчивостью.

Его можно сжечь: $SiC + 2O_2 = SiO_2 + CO_2$, а также сплавить со щелочью в присутствии кислорода: $SiC + 2O_2 + 4NaOH = Na_2SiO_3 + Na_2CO_3 + 2H_2O$

Оксид кремния (IV) — кислотный оксид.

В природе – речной песок, кварц, кремнезем. Имеет атомную кристаллическую решетку.

- 1) Не реагирует с водой т.к. кремниевая кислота нерастворима.
- 2) При сплавлении реагирует со щелочами: SiO₂ + 2KOH -t→ K_2 SiO₃ + H₂O
- 3) Реагирует с основными оксидами: $SiO_2 + MgO t → MgSiO_3$ и карбонатами щелочных металлов: $SiO_2 + K_2CO_3 t → K_2SiO_3 + CO_2$ при сплавлении.
- 4) Из кислот реагирует **только с плавиковой или с газообразным фтороводородом**: $SiO_2 + 6HF(\Gamma) = SiF_4 \uparrow + H_2O$ $SiO_2 + 6HF(p-p) = H_2[SiF_6] + 2H_2O$
- 5) При температуре выше 1000 °C реагирует с активными металлами, при этом образуется кремний: $SiO_2 + 2Mg = Si + 2MgO$ или при избытке восстановителя силициды: $SiO_2 + 4Mg = Mg_2Si + 2MgO$.
- 6) Взаимодействие с неметаллами.

Реагирует с водородом: $SiO_2 + 2H_2 = Si + 2H_2O$, Взаимодействует с углеродом: $SiO_2 + 3C = SiC + 2CO$.

Кремниевая кислота.

Имеет полимерное строение и состав $xSiO_2$ yH_2O .

В водных растворах доказано существование ортокремниевой H_4SiO_4 , метакремниевой H_2SiO_3 кислот.

Получение: вытеснение из растворимых силикатов более сильными кислотами:

$$Na_2SiO_3 + 2HCI = H_2SiO_3 \downarrow + 2NaCI$$

 $Na_2SiO_3 + 2H_2O + 2CO_2 = 2NaHCO_3 + H_2SiO_3 \downarrow$,

Свойства:

- 1)Растворяется в концентрированных щелочах: $H_4SiO_4 + 4KOH \rightarrow K_4SiO_4 + 4H_2O$
- 2)Разлагается при нагревании: H_2SiO_3 -t→ SiO_2 + H_2O

<u>Силикаты.</u> Большинство силикатов нерастворимо в воде, кроме силикатов натрия и калия, их называют «жидким стеклом».

Получение:

1) растворение кремния, кремниевой кислоты или оксида в щелочи:

$$H_4SiO_4 + 4KOH \rightarrow K_4SiO_4 + 4H_2O$$

 $Si + 2NaOH + H_2O = Na_2SiO_3 + H_2$
 $SiO_2 + 2KOH - t \rightarrow K_2SiO_3 + H_2O$

- 2) Сплавление оксидов: CaO + SiO₂ -t \rightarrow CaSiO₃
- 3) Взаимодействие солей: $K_2SiO_3 + CaCl_2 = CaSiO_3 + 2KCl$

Стекло – тоже силикат.

Состав обычного оконного стекла: Na_2O ·CaO·6SiO₂.

Стекло получают при сплавлении в специальных печах смеси соды Na_2CO_3 , известняка $CaCO_3$ и белого песка SiO_2 : $6SiO_2 + Na_2CO_3 + CaCO_3 = Na_2O \cdot CaO \cdot 6SiO_2 + 2CO_2$.

Для получения специального стекла вводят различные добавки, так стекло содержащее ионы Pb^{2+} – хрусталь; Cr^{3+} – имеет зеленую окраску, Fe^{3+} – коричневое бутылочное стекло, Co^{2+} – дает синий цвет, Mn^{2+} – красновато—лиловый.

Некоторые другие соединения кремния:

Хлорид и фторид кремния — галогенангидриды кремниевой кислоты. SiCl₄

Получение	$SiO_2 + C + Cl_2 -t \rightarrow SiCl_4 \uparrow + CO$
Свойства	

SiF₄

Получение	
Свойства	

Олово и свинец.

Свойства простых веществ

	Характерные степени окис-	Физические	Оксиды -	Гидроксиды
	ления	свойства	амфотерные	
Олово Sn	+2,+4 – обе степени окисле-	t пл =	SnO	Sn(OH) ₂
	ния достаточно устойчивы	232°C	SnO ₂	$SnO_2 \cdot xH_2O$
Свинец Pb	Основная - +2 , +4 - неус-	t пл =	PbO	Pb(OH) ₂
	тойчива.	327°C	PbO ₂	+4 -не существует

Получение металлов:

Свойства металлов:

1)Реагируют с кислородом, серой, галогенами:

 $Sn+O_2 = SnO_2$ Pb+O₂=PbO и Pb₃O₄ (сурик, двойной оксид)

 $Sn+2Cl_2=SnCl_4$ $Pb+Cl_2=PbCl_2$

Sn+S=SnS и SnS_2 (при более низкой температуре) Pb+S=PbS

2) Как амфотерные металлы – реагируют со щелочами:

 $Sn + 2KOH + 2H_2O = K_2[Sn(OH)_4] + H_2$ $Pb + 2NaOH + 2H_2O = Na_2[Pb(OH)_4] + H_2$

3) Реакции с минеральными кислотами:

Олово: Sn + 2 HCl = SnCl₂ + H₂, с серной олово практически не реагирует.

Свинец: Так как хлорид и сульфат свинца – нерастворимы, свинец не реагирует с разбавленными серной и соляной кислотами.

4) Реакции с азотной кислотой:

Концентрированная азотная кислота окисляет олово до β -оловянной кислоты H_2SnO_3 , а разбавленная — до нитрата олова; свинец реагирует только с разбавленной кислотой, окисляется до соли $Pb(NO_3)_2$.

Sn + 4HNO_{3 конц.} = β -SnO₂·H₂O + 4NO₂ + H₂O

 $3Sn + 8HNO_{3 pa36.} = 3Sn(NO_3)_2 + 2NO + 4H_2O$

Pb + HNO_{3 pas6.} $-t \rightarrow$ Pb(NO₃)₂ + NO + H₂O.

5) Реакции с концентрированной серной кислотой:

 $Sn + 4H_2SO_4 = Sn(SO_4)_2 + 2SO_2 + 4H_2O$

 $Pb + 3H_2SO_4 = Pb(HSO_4)_2 + SO_2 + 2H_2O$

Оксиды олова и свинца.

SnO – типичный амфотерный оксид

SIIO IVIIIVI-IIIL	и анфотерный оксид.
Получение	$SnO_2 + Sn = 2SnO$
	$Sn(OH)_2 -t \rightarrow SnO + H_2O$ (без доступа воздуха)
Свойства	1) Окисляется на воздухе $SnO + O_2 = SnO_2$
	2) С водой не реагирует.
	3) Амфотерный оксид: реагирует с кислотами, щелочами, оксидами актив-
	ных металлов. SnO + 2HCl = SnCl ₂ + H_2O
	SnO + 2NaOH+ H_2 O = Na ₂ [Sn(OH) ₄] (и Na ₂ SnO ₂ при сплавлении)
	$SnO + CaO -t \rightarrow CaSnO_2$

 SnO_2 – амфотерный оксид с преобладанием кислотных свойств.

Получение	$Sn + O_2 = SnO_2$
Свойства	1) Не реагирует с водой
	2) Реагирует с кислотами и щелочами:
	$SnO_2 + NaOH + H_2O = Na_2[Sn(OH)_6]$
	$SnO_2 + HCl = H_2[SnCl_6]$

3) Реагирует с восстановителями:
$SnO_2 + H_2 = Sn + H_2O$
$SnO_2 + 2C = Sn + 2CO$

PbO – амфотерный оксид.

Получение	$Pb + O_2 = PbO;$	$Pb(OH)_2 -t \rightarrow PbO + H_2O;$	$2PbS + 3O_2 = 2PbO + 2SO_2$
Свойства			

 PbO_2 — так как степень окисления +4 не характерна для свинца, этот оксид является очень сильным окислителем.

Получение	$PbO + CaOCl_2 = PbO_2 + CaCl_2$
Свойства	1) окисляет Mn(+2 и +4), Cr(+3) до более высокой степени окисления.
	$5PbO_2 + 2MnSO_4 + 3H_2SO_4 = 5 PbSO_4 + 2HMnO_4 + 2H_2O$
	2) Окисляет соляную кислоту
	3) Реагирует с другими восстановителями: